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The transient behavior of two-phase flow and heat transfer in a channel filled with porous media was
numerically studied in this paper. Based on the two-phase mixture model, numerical solutions were
obtained using the Finite-Volume Method (FVM). Two methods to treat the discontinuous diffusion
coefficient in the energy equation, i.e. the harmonic mean method and the “modified” Kirchhoff method
were compared. It was found that the “modified” Kirchhoff method was better in dealing with the rapid
change in the diffusion coefficient. Three different cases, with discrete heat flux applied at (1) the upper
wall, (2) lower wall and (3) both the upper and lower walls were studied. The velocity and temperature
fields for these cases were discussed. The results show that the liquid and vapor flow fields, as well as the
temperature and liquid saturation fields have distinctly different features with the change in heating
location. An analysis of the vapor volume fraction indicates that the largest amount of vapor with the
highest vapor generation rate was for the case in which the heat flux is applied from the lower wall.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Two-phase flow and heat transfer in porous media is widely
encountered in the engineering industry [1-3]. By using phase
change in a cooling system, the heat removal capacity can be greatly
increased due to the large latent heat. It is demonstrated that the
use of porous media as heat sinks is an effective way to remove heat
[4—7]. Thus, a system which exploits the potential of phase change
in a porous media is undoubtedly a promising solution to dissipate
high heat fluxes from the heat sources. Extensive studies have been
carried out to enhance the knowledge of two-phase convection
heat transfer in porous media [8—13]. Although steady-state
investigations can provide understanding of the physics behind
two-phase flow problems, the transient simulation approach would
be more useful since it can reveal the evolution of the boiling
process and the interactions between the liquid and vapor phases.

It is commonly accepted that the phase structure in a fluid-
saturated porous medium heated from below and cooled from above,
is layered after the onset of boiling, with a superheated vapor zone
overlying a two-phase zone and a sub-cooled liquid zone. In the two-
phase zone, both the liquid and vapor phases coexist. The visuali-
zation experiments of Sondergeld and Turcotte [8] revealed that
within the liquid zone, heat transfer can occur by both conduction
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and convection, whereas, in the two-phase zone, heat transfer occurs
mainly due to the counter-percolation between the liquid and vapor.
Bau and Torrance [9—11] performed a series of experiments to
investigate natural convection with phase change in low-perme-
ability porous media. Their results showed that the two-phase zone
is essentially isothermal at the saturation temperature. The vertical
counter-current flow of the liquid and vapor dominates the heat
transfer in the two-phase zone. Ramesh and Torrance [ 14] performed
an analytical study of the stability of boiling in porous media. Their
results revealed that for liquid-dominated systems, the buoyancy
force was the main factor which causes system instability. However,
in vapor-dominated systems, gravitational instability may occur.
The aforementioned works are experimental studies of natural
convection boiling heat transfer in porous media. Numerical simu-
lation of two-phase flow and heat transfer in porous media is
extremely complex due to the strongly nonlinear and coupled
nature of the governing equations. The involved discontinuity in the
thermal properties at the phase change boundary also requires
careful consideration. Traditionally, the complex problems of
multiphase flow and transport in porous media were solved by the
separated flow model (SFM) [15,16]. In this model, the various
phases are regarded as distinct fluids with individual thermody-
namic and transport properties. The mathematical governing
equations are separated for each phase. The separated phases are
coupled together by appropriate interface conditions. Although SFM
is rather straightforward, a large number of differential equations
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Nomenclature

G specific heat of fluid (J/kg K)

Ds capillary diffusion coefficient (m?/s)
fis) hindrance function

g gravity vector (m/s?)

h enthalpy (J/m?)

heg latent heat of phase change (J/kg)

H height of the simulation domain (m)
Jj diffusive mass flux (kg/m? s)

J(s) capillary pressure function

k relative permeability

Ketr effective thermal conductivity

K permeability of the porous medium (m?)
L length of the simulation domain (m)
p pressure (Pa)

q’ heat flux (W/m?)

s liquid saturation

S energy source term (W/m?)
t time (s)

T temperature (°C)

u velocity vector (m/s)

Greek symbols

thermal expansion coefficient (1/K~1)
Advection correction coefficient

p1 — pv (kg/m?)

density (kg/m?)

porosity

relative mobility

dynamic viscosity (kg/m s)

kinetic viscosity (m?/s)

surface tension (N/m)

effective heat capacitance ratio
diffusion coefficient

diffusion coefficient in enthalpy equation

~N~NBDQ <& »mb]:-{‘cb

=

Subscripts

1 liquid

o initial state
s solid

sat saturation
Y vapor

have to be solved. An alternative approach, the two-phase mixture
model, was developed by Wang and Beckermann [12]. In this model,
the two-phase system is treated as constituents of the binary
mixture. The governing equations in this model identically reduce
to single-phase transport equations. The bulk behavior of the
mixture is captured by this model. However, the formulations do
not lose the intrinsic characteristics of the individual phases.
Compared with the SFM model, the two-phase mixture model is
easier to implement. Hence, it is popularly used in the study of two-
phase flow in porous media. Wang et al. [17] adopted this model to
numerically study boiling and natural convection in capillary
porous media. Four different flow patterns were successfully pre-
dicted and compared with experiments. An improved two-phase
mixture model was later proposed by Wang [18] to cover the
simulation in all zones of the porous media as phase change occurs.
The new numerical scheme was validated with their experimental
results. Zhao and Liao [19] used the new model to study boiling
heat transfer in a vertical packed bed. Different flow directions
were investigated. Their results showed that the direction of the
incoming fluid had great influence on both the flow field and
temperature distribution. Najjari and Nasrallah [20,21] conducted
several studies on the heat transfer in the conjugated domain with
an open layer above the porous layer. The two-phase mixture
model was used to treat the fluid flow and heat transfer in the
porous layer. The effects of latent heat storage and the thickness of
the porous layer on the heat transfer were investigated. Yuki et al.
[22] modified the two-phase mixture model to study high flow
velocity in the porous media. Their results showed that the modi-
fied equations produced more realistic and reasonable results for
the two-phase flow under high velocity and high heat flux.

A good heat sink in a cooling system is crucial for effective heat
removal. It has been shown that heat sinks made of porous media
with high thermal conductivity and large surface area can improve
heat transfer performance greatly. A relatively new porous media
was developed at Oak Ridge National Laboratory (ORNL), USA [23].
It consists of predominantly spherical pores with small openings
between the ligaments. The properties of this material are well
documented in the work of Klett et al. [24]. The prominent
advantages of this material make it a promising material for many
thermal management applications [25,26].

The study of the transient two-phase flow and heat transfer in
the porous media is important since it can provide more detailed
information on the phase change process. Although many studies
have been reported on two-phase flow using the two-phase
mixture model, transient fluid flow and heat transfer in the porous
media have not been investigated in depth. Currently, there is no
detailed information on the treatment of the discontinuity in the
diffusion coefficient in the aforementioned works. Therefore, the
objective of the present work is to study transient two-phase flow
and heat transfer in a discretely heated channel filled with porous
media. The two-phase mixture model is adopted to describe
momentum and energy transport in the system. Two different
numerical schemes, i.e. the harmonic mean method and the
“modified” Kirchhoff method [27], were adopted to cope with the
sharp discontinuity in the diffusion coefficient. Three cases with
discrete heat flux applied from different locations viz. (1) lower
wall, (2) upper wall and (3) both the lower and upper walls were
considered. The vapor generated for each of these cases was
analyzed.

2. Mathematical formulation
2.1. Problem description

The present work studies the two-phase flow and heat transfer
in a channel fully filled with a porous medium. The schematic of the
problem is shown in Fig. 1. A discrete heat flux, at the lower wall
[Fig. 1(a)], the upper wall [Fig. 1(b)], and both the lower and upper
walls [Fig. 1(c)], is imposed in turn on the domain. These are
henceforth referred to as bottom heated (BH), top heated (TH), and
bottom and top heated (BTH) cases, respectively. The non-heated
portion of the wall is adiabatic. As the sub-cooled water with low
temperature Ti, flows into the channel, convection heat transfer
occurs between the heated wall and the fluid. When the heat flux is
increased, boiling occurs at the heated surface and thus a two-
phase zone is formed. Further increase in the heat flux will lead to
a superheated vapor zone. This could cause dry-out in which no
liquid exists on the heated surface. The vapor layer blankets the
heated surface and greatly reduces the heat transfer between the
heated surface and the liquid. Consequently, the local temperature
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adiabatic

Fig. 1. Schematic of the problem (a) BH; (b) TH; (c) BTH.

at the dry-out location increases sharply. This is unfavorable to the
cooling system. Hence, the present work considers only the case
without any occurrence of a superheated vapor zone.

2.2. Governing equations

The present model considers an isotropic and homogeneous
porous medium. The local thermal equilibrium model which
assumes that the solid and fluid phases are at the same tempera-
ture is used here. The governing equations by adopting the two-
phase mixture model [18] can be written as:

Conservation of mass:

ap

ess+ Viou) = 0 (1)

Conservation of momentum:

= %Wp (o po)e] 2)

Conservation of energy:

3)

KAph
Qg—}; + V(ynuh) = V(I',Vh) +V [f(s)ﬂg}
v

v

The mixture variables and the properties in Eqs. (1)—(3) are
listed in Table 1. The temperature and liquid saturation s can be
calculated from the enthalpy as

h+2ph
w h < *p1(2hvsat - hlsat)
P1Cpl
T = Tsat 0 0 — p1(2hysat — higae) < h < —pyhysat
+
Tsat + A Pyllvsat pyhvsat < h
PyCpv

(4)

Table 1
Variables in the two-phase mixture model.

Variables Expressions

Density p=pSs+py(l—5)
Velocity pu = piy + pylly
Enthalpy ph = pishy + py(1 - s)hy

Kinetic density P = p[l— ﬁl(T - TO)MI(S) +py[l = ﬁv(T - Tsat)]lv<s>

_psta(l-s)

Viscosi
& ke /vy + kv /vy
Adkvaaien ErieEion - [(Pv2/hﬂl)(1 *hs) +5][hvsat’(]1 +4p) ]hlsat}‘ll
coefficient (2hysat — lsa::l); + (pyhvsat/p)(1 = S)
Effective heat capacitance Q = &+ psCps(1 — e)m
ratio 1 dT
Effective diffusion Iy =+———F——F—FD+kems
coefficient Bl (()15_ Pu/Pi)hvsat /g ail
Capillary diffusion Ds = (eK) 7o %[—]’ (s)]
coefficient ”' « (/1;"/”') i+ Ky e
Relati tiliti A = /71 A = IV/Lay]
elative motilities 1(8) T/ + ke e’ v(S) T/ + Kea e
Hindrance function f(s) = kivkn /1

ke /v + kev /vy

kg =3, kw = (1—5)3
J(s) = 1.417(1 — ) — 2.120(1 — 5)2 + 1.263(1 — 5)3

Relative permeabilities
Capillary pressure
function

1 h<—py(2hysat —hygat)

h+pyhysat

- —pi(2h —h h<-—o,h 5

’ piheg 4 (1 —py) hsat P1(Zhysat—Mysar) <h<—pyhysat ~ (5)
0

—pyhysat<h

Subscripts 1 and v in Egs. (4) and (5) refer to the liquid and vapor,
respectively. The individual velocities of the liquid and vapor can be
recovered from

pityy = Apu +j (6)

pylly = Avpu —j (7)

where j is the total mass flux which is expressed as

j = D)V + 5/ (8)

2.3. Boundary conditions

The initial and boundary conditions for the present problem are
given as follows:

Att=0,
h =p (CplTin - 2hvsat) (9)
u=v=20 (10)

At theinletx =0and t > 0,

h=p (CplTin - 2hvsat) (11)
H—
U= 6um}% (12)

At the outlet x = L and t > 0,

oh

ox 0 (13)
ou ov

ox  ox 0 (14)



1118 H.Y. Li et al. / International Journal of Thermal Sciences 49 (2010) 1115—-1127

At the position of the wall that is heated with constant heat flux
and t > 0,

_th T e e 15
) oy )=, —8=4 (15)
u=v=20 (16)
At the position of the wall that is non-heated and ¢ > 0,
Th oh KA/)hfg
L f(sV———S50 = 0 17
Sy T, 8 (17)
u=v=20 (18)

2.4. Numerical procedure

The momentum equation [Eq. (2)] is different from the traditional
Navier—Stokes equation. In the present problem, the momentum
equation [Eq. (2)] is first substituted into the continuity equation [Eq.
(1)] to obtain the equation for pressure. The resulting pressure
equation is solved by a line-by-line tri-diagonal matrix algorithm.
With the results of the pressure, the mixture velocity field can be
calculated using the momentum equation [Eq. (2)]. The individual
velocities of the liquid and vapor can be obtained from the mixture
velocity using Eqs. (6) and (7). These velocities are stored at the
interfaces of the control volumes. The energy equation [Eq. (3)] can be
written as a general convective—diffusive equation of the form

a(pp)  A(pwi¢) 0 (.09
T"r—ax; = a_X]< a—x]> +S (19)

where ¢, I' and S are defined as the dependent variables, diffusion
coefficient and source term in the finite-volume method (FVM)
literature [28]. These equations were solved using FVM [28]. The
power-law was used to treat the combined convection—diffusion
term. A relative error of less than 10~ is required for both the
velocity and temperature fields between successive iterations to
achieve convergence.

2.5. Code validation

The present code was validated against the experimental results
of Easterday et al. [29]. Two-phase flow through a channel
completely filled with a porous medium was investigated in their
work. The lower wall of the channel between 1/3L and 2/3L along
the flow direction was subjected to a constant heat flux. Fig. 2(a) and
(b) show that there is reasonable agreement between the present
simulation and the experimental results of Easterday et al. [29] for
Ui, = 0.35 mm/s. However, large discrepancies between the exper-
iments and numerical simulation are observed around the locations
with steep temperature gradient. These can be attributed to several
causes. Firstly, the use of some constitutive relationships from the
literature which include the effective thermal conductivity, the
capillary pressure and others, may not correspond exactly to the
conditions of the experiments. Secondly, thermal dispersion is not
included in the simulation. Thirdly, steep temperature gradients
exist in the thermocouple probe locations. Accurate measurement
of the temperature is extremely difficult. Finally, the three-dimen-
sional effect may be important in the experimental setup while the
current simulation is only two-dimensional.

2.6. Treatment of the diffusion coefficient

In modeling a phase change problem, treatment of the discon-
tinuous diffusion coefficient at the phase change boundary
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Fig. 2. Comparison of the simulation and the experimental results of Easterday et al.
[29] for (a) x = 1/3L; (b) x = 1/2L.

presents an important challenge. The variation of diffusion coeffi-
cient with liquid saturation s in the current problem is shown in
Fig. 3(a). The diffusion coefficient is a strong function of s which in
turn is highly dependent on temperature, as well as enthalpy.
As seen from Fig. 3(a), the diffusion coefficient encounters a sharp
and discontinuous variation, viz. from around 10~ at s = 1-0 for
a slight change in s. The same phenomenon occurs as s changes
from non-zero to 0. This type of problem requires careful
consideration.

Several numerical schemes have been proposed to deal with the
discontinuity in the diffusion coefficient [27,28,30]. One popular
scheme is the harmonic mean method. A detailed description of this
method can be found in the work of Patankar [28]. Voller and
Swaminathan [27] developed a new scheme based on the local
Kirchhoff transformation [31] which is mathematically expressed as

T
¢ = /r(a)da (20)

Trer

After some mathematical manipulations, the equivalent
expressions of I'(a) are [27]

_ _ %

= y(a) = ay (21)

I'x(a)

With reference to Eqs. (20) and (21), the central difference
approximations of the interface diffusion coefficient can be written as
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Eqgs. (22) and (23) are the new scheme proposed by Voller and
Swaminathan [27] who termed it the “modified” Kirchhoff method.
The current work will adopt the same terminology for easy refer-
ence. However, unlike the work of Voller and Swaminathan [27]
where the integral variable is temperature, the present article
adopts enthalpy h, as the integral variable given the form of the
energy equation expressed in terms of enthalpy. The performance
of the harmonic mean method and the “modified” Kirchhoff
method in resolving the discontinuous diffusion coefficient will be
compared. A square channel completely filled with a porous
medium is used to test these two methods. Fluid flows through the
channel with constant heat flux at the lower wall. The length and
the width of the channel are both 20 mm. The properties of the
porous medium in the current study were measured and reported
in a previous experimental study by the authors [32]. The porosity
of the porous medium is 0.75 with absolute permeability of
7.74 x 1071% m2, The effective thermal conductivity for water flow
through the porous media is calculated based on the model
proposed by Tee et al. [33]. A parabolic velocity profile with an
average velocity of 1 mm/s is imposed at the inlet. The heat flux is
set to 400 KW/m?. A time-step size of At = 0.5 s with 60 x 60
control volumes is found to produce grid-independent results. The
steady-state temperature distributions from the harmonic mean
and “modified” Kirchhoff methods are shown in Fig. 3(b) and (c),
respectively. The dashed lines in both figures indicate the interface
of the sub-cooled liquid zone and two-phase zone. As seen from
Fig. 3(b), both the 80 °C and 90 °C isotherms are not smooth.
Although the use of the “modified” Kirchhoff method involves an
integral of Eq. (20) which requires additional calculations, all the
temperature contours are rather smooth. Meanwhile, in the process
of the numerical iteration, more rapid convergence is attained by
using the “modified” Kirchhoff method. Hence, in the present
simulation, the “modified” Kirchhoff method will be employed.

3. Results and discussion

As mentioned previously, the present study focuses on the
transient behavior of two-phase fluid flow and heat transfer in
porous media. The effects of discrete heat flux from different
locations on the transient flow and temperature fields will be
investigated. The height of the channel is H and the length is L. The
distances before the fluid flows into and out of the heated section
are Iy and I, respectively. The channel is completely filled with
porous media. For all cases studied, the height of the channel is
20 mm. [1/H and l»/H are set to 2 and 3, respectively to ensure that
the inlet and exit boundary conditions have no effect on the solu-
tion. Water enters the domain with a parabolic velocity profile. The
average velocity at the inlet is 0.2 mm/s and the inlet temperature is
22 °C. For both BH and TH cases, a heat flux g” = 100 kW/m? was
imposed at the wall between the positions of 1 and I, along the
flow direction. For the BTH case, the heat fluxes at the bottom and
the top heated sections were set to 50 kW/m? resulting in a total
heat flux of 100 kW/m?. These heat fluxes were applied at the same
axial location as the aforementioned two cases on the upper and
lower walls.

A grid independence study was carried out and the results show
that a mesh of 360 x 60 control volumes with At = 0.5 s produces
a grid-independent solution. All subsequent computations were
performed using this time-step and mesh size.

3.1. Discrete heat flux at the lower wall — the BH case
Figs. 4—6 show the transient behavior of the fluid flow and heat

transfer for the case where the lower wall is discretely heated. In
the figures, the interface between the sub-cooled liquid zone and
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the two-phase zone, also known as the condensation front, is
shown as a bold solid line. The temperature in the two-phase zone
remains at 100 °C. The liquid saturation inside the sub-cooled zone
is 1. In Fig. 6, the numbers on the isotherms in the sub-cooled liquid
zone are the temperatures. The numbers inside the two-phase zone
are the values of the liquid saturation s. At t = 0, liquid flows into
the channel with a parabolic velocity profile. At the same time, the
discrete heat flux at the lower wall is activated. Within a short
distance from the inlet, the flow becomes uniform [Fig. 4(a)]. This is

characteristic of a porous medium. Heat is conducted from the
heated surface to the solid portion of the porous medium, and then
transferred to the liquid flowing through the empty space near the
heated surface. The temperature of the liquid near the heated
surface increases [Fig. 6(a)] and its density decreases. Acted upon
by the buoyancy force, the liquid deflects upward slightly after
flowing past the heated surface. At this moment of time, since the
density variation is small due to the small temperature difference,
the buoyancy force remains small and its effect is less obvious.
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Fig. 5. Vapor velocity vectors at (a) 18 s; (b) 25 s; (c) 40 s; (d) 60 s; (e) 150 s; (f) 190 s;
(g) 250 s; (h) 1000 s.

This will however change upon further heating. At t = 10 s, as seen
from Fig. 4(b) and given the large temperature difference [Fig. 6(b)],
the buoyancy force on the liquid becomes stronger and its effect on
the flow field is now obvious. The liquid upstream of the heated
surface flows downward and towards the heated surface given its
lower temperature and higher density. Upon leaving the heated
surface, it flows downstream upwardly after being heated. With
continued heating, at t = 15 s, the effect of the buoyancy on the
liquid becomes so significant that it changes the flow structure.
The upwardly direct flow of the liquid near the heated surface and
the downwardly direct flow of the liquid away from the heated
surface create a circulatory flow at the rear of the heated surface
[Fig. 4(c)]. Prior to this, the temperature contours have approxi-
mately the “dome” shape covering the heated surface [Fig. 6(a) and
(b)]. These profiles are similar to the two-dimensional conduction
profiles until the flow structures change. The circulatory flow which
occurred at t = 15 s changes the shapes of the temperature contours
slightly [Fig. 6(c)]. The isotherms are seen to be slightly sparser at
the back of the heated surface compared to those at the leading
edge of the heated surface, indicating poorer heat transfer. The heat
absorbed by the circulatory flow is mainly transferred to the main
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stream by conduction rather than by convection. This is not favor-
able to heat transfer.

The onset of phase change occurs around t = 18 s as seen from
Fig. 4(d). A two-phase zone, although extremely thin, forms just
above the heated surface. This can be seen in the view of the
enlarged figure at the relevant location adjacent to the heated
surface. The two-phase zone contains both liquid and vapor coex-
isting together. Only a small amount of liquid becomes vapor at this
time. The generated vapor inside the two-phase zone covers the
heated surface and heat transfer from the heated surface to the fluid
is thus reduced. The quantity of vapor at this time is sufficiently
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small so that its effect on the velocity field is not obvious [Fig. 5(a)].
At t = 40 s, the two-phase zone expands [Fig. 4(e)] as more liquid
vaporizes. The density of the vapor is much lower than the liquid.
Therefore, the generated vapor flows upwards [Fig. 5(c)] due to the
buoyancy force which, simultaneously, leads to the expansion of the
two-phase zone. As heating continues, the density difference
between the liquid from the incoming upstream and the liquid
adjacent to the condensation front is further increased. Most of the
incoming liquid in the sub-cooled liquid zone, referred to as the
main stream from henceforth, flows downwardly to the heated
surface. As it approaches the condensation front, the main stream

H.Y. Li et al. / International Journal of Thermal Sciences 49 (2010) 1115—-1127

turns upward because it is heated and becomes lighter. The formed
vapor in the two-phase zone occupies the pores partially reducing
the permeability for liquid flow through the two-phase zone. This
also helps to deflect the liquid upward. After flowing through the
two-phase zone, the accelerated main stream flows downward and
exerts a larger shear force on the liquid at the rear of the two-phase
zone, thus, increasing the strength of the vortex. With the occur-
rence of the two-phase zone, the dome-shaped temperature
contours changes totally. The isotherms in the leading edge of the
heated surface are inclined in an upward fashion towards the outlet
[Fig. 6(e)] due to the incoming sub-cooled liquid.
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At t = 60 s, the downward flow of the incoming main stream
becomes so significant that only a small portion of liquid flows near
the upper wall. The liquid with low velocity adjacent to the upper
wall is counteracted by the deflected main stream passing the two-
phase zone, resulting in another circulatory flow [Fig. 4(f)]. The
vapor, driven by both capillary-induced and buoyancy-induced
forces, flows partially upwards to the inlet and outlet [Fig. 5(d)].
The newly emerged vortex adjacent to the upper wall forces the
incoming liquid to flow downwards, and thus reduces the heat
transfer in the locations near the vortex. This is reflected by the
changes to the isotherms of T = 25 °C and T = 40 °C from Fig. 6(e)
and (f). The minimum liquid saturation s is found to be at the
location above the heated surface. With the expansion of the two-
phase zone, the vortex at the rear of the two-phase zone is pushed
further downstream [Fig. 4(f)]. As heat is being transferred, the
temperature difference of the main flow leaving the two-phase
zone is reduced [Fig. 6(g)] thus reducing its density difference. This
gradually suppressed the vortex at the rear of the two-phase zone
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Fig. 8. Vapor velocity vectors at (a) 28 s; (b) 30 s; (c) 40 's; (d) 60 s; (e) 150 s; (f) 190 s;
(g) 250 s; (h) 1000 s.

[Fig. 4(g)]. The vapor inside the two-phase zone splits into three
streams at this time [Fig. 5(e)], with one towards the upstream at
the front, the other flowing downstream at the back, and the left
stream flowing upwards to the upper wall in the middle. At
t = 190 s, the vortex at the rear of the two-phase zone is totally
suppressed. Affected slightly by the buoyancy force, the liquid at
the rear of the two-phase zone flows upward. This stream of liquid
becomes parallel as the two-phase zone expands to the outlet as
shown in Fig. 4(j) for t = 1000 s. At this time, steady state has been
achieved. The majority of the vapor above the non-heated surface
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Fig. 9. Temperature and liquid saturation contours at (a) 2 s; (b) 10's; (c) 15s; (d) 21 s;
(e) 40 s; (f) 60 s; (g) 150 s; (h) 190 s; (i) 250 s; (j) 1000 s.
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flows directly upwards because of the buoyancy force [Fig. 5(h)].
Note that vapor from the heated surface flows to the condensation
front in a normal direction.

3.2. Discrete heat flux at the upper wall — the TH case

The case with discrete heat flux imposed from the upper wall at
the same axial location as the BH case is now discussed. Figs. 7—9
show the evolutions of the fluid velocity and temperature
profiles. At the beginning of the heating, the liquid has a similar
flow profile [Fig. 7(a)] as in the BH case. The temperature contours

show the reversed “dome” shape [Fig. 9(a)]. However, this will
change upon further heating. Driven by the buoyancy force, the
liquid with high temperature and low density below the heated
surface of the upper wall flows upward. The upstream parallel flow
from the inlet is counteracted by this buoyancy-induced upward
flow of the liquid, resulting in a circulatory flow in the leading edge
of the heated surface [Fig. 7(c)].

The onset of boiling occurs at t = 21 s [Fig. 7(d)], 3 s later than
that in the BH case. The buoyancy force drives the high temperature
liquid to flow towards the heated surface of the upper wall,
diminishing the convection heat transfer between the heated
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surface and the liquid below, which in turn delays the time for the
liquid to be heated to its boiling point. At the early stages of phase
change, the generated vapor with lower density accumulates on the
top of the heated surface due to the buoyancy force. The quantity of
the vapor at this stage is extremely small so that its velocity cannot
be seen until t = 28 s [Fig. 8(a)]. As time progresses, more liquid
vaporizes. Since the vapor density is much smaller than the liquid,
the volume of the vapor expands, leading to the expansion of the
two-phase zone. The velocity vectors of the vapor can be clearly
seen in Fig. 8(b). Given the strong incoming sub-cooled liquid flow,
the temperature contours with reversed “dome” shape incline
slightly to the outlet [Fig. 9(e)]. As heating continues, the two-phase
zone expands downward and migrate downstream [Fig. 7(f)]. The
main stream, coming from the inlet boundary flows downward to
bypass the vortex. Upon reaching the heated surface, it is driven to
flow upward towards the condensation front due to the buoyancy
force. This is different from the BH case in which the liquid was
deflected to bypass the condensation front. Driven by the capillary
pressure gradient, it is interesting to note that the liquid in the two-
phase zone flows towards the heated surface [Fig. 7(g)], while the
vapor in the two-phase zone flows primarily downwards [Fig. 8(e)].
Such counter-percolation movement of the liquid and vapor is the
main heat transfer mechanism within the two-phase zone.
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Fig. 11. Vapor velocity vectors at (a) 85 s; (b) 90 s; (c) 120 s; (d) 150 s; (e) 190 s;
(f) 250 s; (g) 1000 s.

As more liquid is vaporized, the two-phase zone assumes the
shape of a half-ellipse [Figs. 7(h), 8(f) and 9(h)]. The resulting shape
is not only affected by gravity, but also by the upward flow of the
liquid as it approaches the condensation front. Under steady state
conditions, the upper wall, from the leading edge of the heated
surface to the outlet is covered by the two-phase zone, as seen from
Figs. 7(j), 8(h) and 9(j) at t = 1000 s. The two-phase zone is smaller
compared to its counterpart in the BH case.
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3.3. Discrete heat flux at both the lower
and upper walls — the BTH case

In this third case study, both the upper and lower walls are
discretely heated. As the liquid flows across these walls, it absorbs
heat from the solid portion of the porous medium. Its temperature
increases [Fig. 12(a) and (b)], leading to a smaller density. The liquid
motion is now affected by the buoyancy force [Fig. 10(a) and (b)].
The liquid across the heated surface of the lower wall, flows
downstream in a slightly upward manner. The liquid upstream of
the heated surface of the lower wall, which is cooler and therefore
denser, tends to flow downward towards the heated surface of the
lower wall to replenish the higher temperature liquid leaving the
region above the heated surface of the lower wall. This combination
of incoming and outgoing flows to the region above the heated
surface of the lower wall is favorable for heat removal from the
heated surface of the lower wall. Buoyancy assists to draw cooler
fluid towards the heated surface and expel hotter liquid from the
region above the heated wall. Heat is convected away to the
downstream fluid from the heated surface of the lower wall. This is
not the case for the liquid flowing across the heated surface of the
upper wall. Buoyancy actually drives the higher temperature liquid
upward towards the heated surface of the upper wall. In such
a situation, the convection heat transfer between the heated
surface of the upper wall and the liquid is reduced. This is not
favorable for heat transfer.

The action of the buoyancy force eventually creates two circu-
latory flows in the channel as shown in Fig. 10(c). These circulatory
flows are located upstream of the heated surface of the upper wall
and downstream of the heated portion of the lower wall. The
circulatory flow near the upper wall is much stronger. The
temperature distribution at t = 50 s [Fig. 12(d)] is obviously not
symmetrical about the middle horizontal plane of the channel. The
poorer heat transfer performance for the upper wall results in
a generally higher liquid temperature in its adjacent. As time
progresses, the liquid adjacent to the heated surface of the upper
wall reaches its boiling point earlier than that adjacent to the
heated surface of the lower wall. Phase change occurs at around
t = 75 s at the upper wall [Figs. 10(d) and 12(d)] and later at the
lower wall. An extremely thin layer of the two-phase zone covers
the heated surface of the upper wall at this time. The vapor velocity
at the upper wall is not obvious until t = 90 s [Fig. 11(b)] where at
this time, the vapor velocity at the lower wall cannot even be
clearly noticed.

The two-phase zones at both the upper and lower walls expand
as heating continues. The two-phase zone at the lower wall is
swept downstream to cover the heated surface of the wall partially
[Fig. 11(c)]. On the contrary, the two-phase zone blankets the
heated surface of the upper wall entirely [Fig. 11(c)]. The presence
of the circulatory flow upstream of the heated surface of the upper
actually hinders cooler liquid from reaching the two-phase zone.
This results in poorer heat transfer. Driven by the buoyancy force,
the vapor on the upper wall attaches to the heated surface.
Therefore, the two-phase zone remains thin and is less affected by
the liquid flow in the sub-cooled zone at the upper wall. The vapor
in the two-phase zone at both the lower and upper walls flows
primarily to the condensation front.

With continued heating, the expanded two-phase zone pushes
the vortex at the lower wall further downstream [Fig. 10(g)]. The
spreading of the heat reduces the temperature difference of the
liquid at the downstream of the heated surface [Fig. 12(g)]. This
suppresses the buoyancy-induced circulatory flow at the rear of the
two-phase zone on the lower wall. At t = 190 s, this circulatory flow
vanishes [Fig. 10(h)] leaving only the circulatory flow at the
upstream of the heated surface on the upper wall. The minimum
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Fig. 13. Time variation of vapor fraction for different cases.

liquid saturation of 0.8 occurred at the upper wall prior to the lower
wall [Fig. 12(h)]. An implication of this result could be that in
thermal systems with heat sources at both the lower and upper
walls, a dry-out zone could appear at the upper wall. In the steady
state [Figs. 10(j), 11(g) and 12(j)], the upper wall, from the leading
edge of the heated surface to the outlet, is covered by the two-
phase zone, while in the lower wall, the two-phase zone starts from
the latter part of the heated surface, showing better heat transfer on
the lower wall compared with the upper wall.

3.4. Variation of the vapor volume fraction

The liquid saturation s is defined as [34]

4
=4 24
s =11 (24)
where ¢ is the porosity of the porous media and ¢ is the fraction of
the volume occupied by the liquid. According to the above defini-
tion, the volume fraction occupied by the generated vapor can be
calculated as

[1dV; — [ sdV;
_ Vf Vf

Sv Vf

(25)
where Vris fluid volume in the porous media. Based on Eq. (25), the
variations of sy with time for different cases are shown in Fig. 13.
The BH and BTH cases achieved steady state in a shorter time
compared with the TH case, indicating enhanced cooling of the
heated surface. The rate of vapor generation, implied by the slope of
the lines, in the BH case is the highest among the three cases. The
largest volume fraction of vapor is also found in the BH case. This
can be attributed to better heat transfer for the case where heating
is from the lower wall. The TH case produces a faster generation of
the vapor before t = 250 s compared with the BTH case. The rate of
vapor generation decreases after that, resulting in the smallest
amount of the vapor among the three studied cases.

4. Conclusions

A numerical study of the two-phase flow and heat transfer in the
channel with porous media was conducted. The harmonic mean
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method and the “modified” Kirchhoff method were adopted to
treat the discontinuity in the diffusion coefficient. The latter was
shown to be better in dealing with the sharp change of the diffusion
coefficient. The effects of heating from different locations on the
transient behavior of the flow and temperature fields were
discussed. The results showed that the location of the heat flux has
a significant effect on fluid flow and heat transfer in a channel filled
with a porous medium. Both the amount and the generation rate of
the vapor in the BH case are the largest among the three cases
studied.
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